3 solutions
-
1
龟速乘
#include <bits/stdc++.h> using namespace std; int main(){ int n; long long c,sum = 0; cin>>n>>c; long long a[n]; for(int i = 0 ; i < n ; i++){ cin>>a[i]; a[i] %= c; } for(int i = 1 ; i < n ; i++){ while(a[i] > 0){ if(a[i] & 1){ sum = (sum % c + a[0] % c) % c; } a[0] = (a[0] % c + a[0] % c) % c; a[i] = a[i] / 2; } a[0] = sum; sum = 0; } cout<<a[0]<<endl; return 0; }
-
0
跟快速幂的思想差不多: 首先假设a * b mod p;
第一步: 将b进行二进制分解得到(2^0 + 2^1 + 2^3.....) 所以: a * b = a * 2^0 + a *2^1.......; 我们发现后一项是前一项的2倍,因此我们只需要判断b的二进制为是否是1,如果是,就加,不是就不加,然后,得到两个数的乘积后得到一个数,和第三个数继续做上面的操作.
写的不是很清楚
#include <algorithm> using namespace std; const int N = 110; long long ans[N]; int n; long long p; int main() { scanf("%d%ld", &n, &p); for(int i = 1; i <= n; i++) scanf("%lld", &ans[i]); long long res = 0; long long temp = ans[1]; for(int i = 2; i <= n; i++) { long long a = temp; long long b = ans[i]; while(b) { if(b & 1) res = (long long) (res + a) % p; b >>= 1; a = (long long)(a * 2) % p; } if(i != n) { temp = res; res = 0; } } printf("%lld", res); }
-
0
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[100],ans,c;
ll quick_mul(ll a, ll b, ll c) {
ll ans = 0; a %= c;//大数先模一下 b %= c; while (b) { if (b & 1) ans = (ans +a)%c; a = (a%c + a%c)%c;//大数需要同余注意,原型:(a+a)%c b >>= 1; } return ans%c;
}
int main() { int n;
ans = 1; cin >> n >> c; for (int i = 0; i < n; i++) { cin >> a[i]; ans = quick_mul(ans, a[i],c); } cout << ans; return 0;
}
- 1
Information
- ID
- 1549
- Time
- 1000ms
- Memory
- 256MiB
- Difficulty
- 6
- Tags
- # Submissions
- 150
- Accepted
- 43
- Uploaded By