3 solutions

  • 1
    @ 2022-4-1 17:39:15

    龟速乘

    #include <bits/stdc++.h>
    using namespace std;
    int main(){
        int n;
        long long c,sum = 0;
        cin>>n>>c;
        long long a[n];
        for(int i = 0 ; i < n ; i++){
            cin>>a[i];
            a[i] %= c;
        }
        for(int i = 1 ; i < n ; i++){
            while(a[i] > 0){
                if(a[i] & 1){
                    sum = (sum % c + a[0] % c) % c;
                }
                a[0] = (a[0] % c + a[0] % c) % c;
                a[i] = a[i] / 2;
            }
            a[0] = sum;
            sum = 0;
        }
        cout<<a[0]<<endl;
        return 0;
    }
    
    • 0
      @ 2023-4-3 13:50:07

      跟快速幂的思想差不多: 首先假设a * b mod p;

      第一步: 将b进行二进制分解得到(2^0 + 2^1 + 2^3.....) 所以: a * b = a * 2^0 + a *2^1.......; 我们发现后一项是前一项的2倍,因此我们只需要判断b的二进制为是否是1,如果是,就加,不是就不加,然后,得到两个数的乘积后得到一个数,和第三个数继续做上面的操作.

      写的不是很清楚

      #include <algorithm>
      using namespace std;
      
      const int N = 110;
      long long ans[N];
      int n;
      long long p;
      int main()
      {
          scanf("%d%ld", &n, &p);
          for(int i = 1; i <= n; i++) scanf("%lld", &ans[i]);
      
          long long res = 0;
          long long temp  = ans[1];
          for(int i = 2; i <= n; i++)
          {
              long long a = temp;
              long long b = ans[i];
              while(b)
              {
                  if(b & 1) res = (long long) (res + a) % p;
                  b >>= 1;
                  a = (long long)(a * 2) % p;
              }
              if(i != n)
              {
                  temp = res;
                  res = 0;
              }
          }
          printf("%lld", res);
      }
      
      
      
      • 0
        @ 2022-2-7 22:39:14

        #include<bits/stdc++.h>

        using namespace std;

        typedef long long ll;

        ll a[100],ans,c;

        ll quick_mul(ll a, ll b, ll c) {

        ll ans = 0;
        a %= c;//大数先模一下
        b %= c;
        while (b) {
        	if (b & 1) ans = (ans +a)%c;
        	a = (a%c + a%c)%c;//大数需要同余注意,原型:(a+a)%c
        	b >>= 1;
        }
        return ans%c;
        

        }

        int main() { int n;

        ans = 1;
        
        cin >> n >> c;
        
        for (int i = 0; i < n; i++) {
        
        	cin >> a[i];
        
        	ans = quick_mul(ans, a[i],c);
        
        }
        
        cout << ans;
        
        return 0;
        

        }

        • 1

        Information

        ID
        1549
        Time
        1000ms
        Memory
        256MiB
        Difficulty
        6
        Tags
        # Submissions
        150
        Accepted
        43
        Uploaded By