#P840C. On the Bench

On the Bench

No submission language available for this problem.

Description

A year ago on the bench in public park Leha found an array of n numbers. Leha believes that permutation p is right if for all 1 ≤ i < n condition, that api·api + 1 is not perfect square, holds. Leha wants to find number of right permutations modulo 109 + 7.

First line of input data contains single integer n (1 ≤ n ≤ 300) — length of the array.

Next line contains n integers a1, a2, ... , an (1 ≤ ai ≤ 109) — found array.

Output single integer — number of right permutations modulo 109 + 7.

Input

First line of input data contains single integer n (1 ≤ n ≤ 300) — length of the array.

Next line contains n integers a1, a2, ... , an (1 ≤ ai ≤ 109) — found array.

Output

Output single integer — number of right permutations modulo 109 + 7.

Samples

3
1 2 4

2

7
5 2 4 2 4 1 1

144

Note

For first example:

[1, 2, 4] — right permutation, because 2 and 8 are not perfect squares.

[1, 4, 2] — wrong permutation, because 4 is square of 2.

[2, 1, 4] — wrong permutation, because 4 is square of 2.

[2, 4, 1] — wrong permutation, because 4 is square of 2.

[4, 1, 2] — wrong permutation, because 4 is square of 2.

[4, 2, 1] — right permutation, because 8 and 2 are not perfect squares.