#P1288B. Yet Another Meme Problem
Yet Another Meme Problem
No submission language available for this problem.
Description
Try guessing the statement from this picture http://tiny.cc/ogyoiz.
You are given two integers $A$ and $B$, calculate the number of pairs $(a, b)$ such that $1 \le a \le A$, $1 \le b \le B$, and the equation $a \cdot b + a + b = conc(a, b)$ is true; $conc(a, b)$ is the concatenation of $a$ and $b$ (for example, $conc(12, 23) = 1223$, $conc(100, 11) = 10011$). $a$ and $b$ should not contain leading zeroes.
The first line contains $t$ ($1 \le t \le 100$) — the number of test cases.
Each test case contains two integers $A$ and $B$ $(1 \le A, B \le 10^9)$.
Print one integer — the number of pairs $(a, b)$ such that $1 \le a \le A$, $1 \le b \le B$, and the equation $a \cdot b + a + b = conc(a, b)$ is true.
Input
The first line contains $t$ ($1 \le t \le 100$) — the number of test cases.
Each test case contains two integers $A$ and $B$ $(1 \le A, B \le 10^9)$.
Output
Print one integer — the number of pairs $(a, b)$ such that $1 \le a \le A$, $1 \le b \le B$, and the equation $a \cdot b + a + b = conc(a, b)$ is true.
Samples
3
1 11
4 2
191 31415926
1
0
1337
Note
There is only one suitable pair in the first test case: $a = 1$, $b = 9$ ($1 + 9 + 1 \cdot 9 = 19$).