#P1935D. Exam in MAC
Exam in MAC
No submission language available for this problem.
Description
The Master's Assistance Center has announced an entrance exam, which consists of the following.
The candidate is given a set $s$ of size $n$ and some strange integer $c$. For this set, it is needed to calculate the number of pairs of integers $(x, y)$ such that $0 \leq x \leq y \leq c$, $x + y$ is not contained in the set $s$, and also $y - x$ is not contained in the set $s$.
Your friend wants to enter the Center. Help him pass the exam!
Each test consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 2 \cdot 10^4$) — the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers $n$ and $c$ ($1 \leq n \leq 3 \cdot 10^5$, $1 \leq c \leq 10^9$) — the size of the set and the strange integer.
The second line of each test case contains $n$ integers $s_1, s_2, \ldots, s_{n}$ ($0 \leq s_1 < s_2 < \ldots < s_{n} \leq c$) — the elements of the set $s$.
It is guaranteed that the sum of $n$ over all test cases does not exceed $3 \cdot 10^5$.
For each test case, output a single integer — the number of suitable pairs of integers.
Input
Each test consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 2 \cdot 10^4$) — the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers $n$ and $c$ ($1 \leq n \leq 3 \cdot 10^5$, $1 \leq c \leq 10^9$) — the size of the set and the strange integer.
The second line of each test case contains $n$ integers $s_1, s_2, \ldots, s_{n}$ ($0 \leq s_1 < s_2 < \ldots < s_{n} \leq c$) — the elements of the set $s$.
It is guaranteed that the sum of $n$ over all test cases does not exceed $3 \cdot 10^5$.
Output
For each test case, output a single integer — the number of suitable pairs of integers.
8
3 3
1 2 3
1 179
57
4 6
0 3 5 6
1 1
1
5 10
0 2 4 8 10
5 10
1 3 5 7 9
4 10
2 4 6 7
3 1000000000
228 1337 998244353
3
16139
10
2
33
36
35
499999998999122959
Note
In the first test case, the following pairs are suitable: $(0, 0)$, $(2, 2)$, $(3, 3)$.
In the third test case, the following pairs are suitable: $(0, 1)$, $(0, 2)$, $(0, 4)$, $(1, 3)$, $(2, 6)$, $(3, 4)$, $(3, 5)$, $(4, 5)$, $(4, 6)$, $(5, 6)$.