#P1833F. Ira and Flamenco
Ira and Flamenco
No submission language available for this problem.
Description
Ira loves Spanish flamenco dance very much. She decided to start her own dance studio and found $n$ students, $i$th of whom has level $a_i$.
Ira can choose several of her students and set a dance with them. So she can set a huge number of dances, but she is only interested in magnificent dances. The dance is called magnificent if the following is true:
- exactly $m$ students participate in the dance;
- levels of all dancers are pairwise distinct;
- levels of every two dancers have an absolute difference strictly less than $m$.
For example, if $m = 3$ and $a = [4, 2, 2, 3, 6]$, the following dances are magnificent (students participating in the dance are highlighted in red): $[\color{red}{4}, 2, \color{red}{2}, \color{red}{3}, 6]$, $[\color{red}{4}, \color{red}{2}, 2, \color{red}{3}, 6]$. At the same time dances $[\color{red}{4}, 2, 2, \color{red}{3}, 6]$, $[4, \color{red}{2}, \color{red}{2}, \color{red}{3}, 6]$, $[\color{red}{4}, 2, 2, \color{red}{3}, \color{red}{6}]$ are not magnificent.
In the dance $[\color{red}{4}, 2, 2, \color{red}{3}, 6]$ only $2$ students participate, although $m = 3$.
The dance $[4, \color{red}{2}, \color{red}{2}, \color{red}{3}, 6]$ involves students with levels $2$ and $2$, although levels of all dancers must be pairwise distinct.
In the dance $[\color{red}{4}, 2, 2, \color{red}{3}, \color{red}{6}]$ students with levels $3$ and $6$ participate, but $|3 - 6| = 3$, although $m = 3$.
Help Ira count the number of magnificent dances that she can set. Since this number can be very large, count it modulo $10^9 + 7$. Two dances are considered different if the sets of students participating in them are different.
The first line contains a single integer $t$ ($1 \le t \le 10^4$) — number of testcases.
The first line of each testcase contains integers $n$ and $m$ ($1 \le m \le n \le 2 \cdot 10^5$) — the number of Ira students and the number of dancers in the magnificent dance.
The second line of each testcase contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — levels of students.
It is guaranteed that the sum of $n$ over all testcases does not exceed $2 \cdot 10^5$.
For each testcase, print a single integer — the number of magnificent dances. Since this number can be very large, print it modulo $10^9 + 7$.
Input
The first line contains a single integer $t$ ($1 \le t \le 10^4$) — number of testcases.
The first line of each testcase contains integers $n$ and $m$ ($1 \le m \le n \le 2 \cdot 10^5$) — the number of Ira students and the number of dancers in the magnificent dance.
The second line of each testcase contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — levels of students.
It is guaranteed that the sum of $n$ over all testcases does not exceed $2 \cdot 10^5$.
Output
For each testcase, print a single integer — the number of magnificent dances. Since this number can be very large, print it modulo $10^9 + 7$.
9
7 4
8 10 10 9 6 11 7
5 3
4 2 2 3 6
8 2
1 5 2 2 3 1 3 3
3 3
3 3 3
5 1
3 4 3 10 7
12 3
5 2 1 1 4 3 5 5 5 2 7 5
1 1
1
3 2
1 2 3
2 2
1 2
5
2
10
0
5
11
1
2
1
Note
In the first testcase, Ira can set such magnificent dances: $[\color{red}{8}, 10, 10, \color{red}{9}, \color{red}{6}, 11, \color{red}{7}]$, $[\color{red}{8}, \color{red}{10}, 10, \color{red}{9}, 6, 11, \color{red}{7}]$, $[\color{red}{8}, 10, \color{red}{10}, \color{red}{9}, 6, 11, \color{red}{7}]$, $[\color{red}{8}, 10, \color{red}{10}, \color{red}{9}, 6, \color{red}{11}, 7]$, $[\color{red}{8}, \color{red}{10}, 10, \color{red}{9}, 6, \color{red}{11}, 7]$.
The second testcase is explained in the statements.